Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-11, 2023.
Article in Chinese | WPRIM | ID: wpr-978445

ABSTRACT

ObjectiveTo explore the effect and mechanism of Zuojinwan (ZJW) in the treatment of ulcerative colitis (UC) through network pharmacology and experimental validation. MethodUsing network pharmacology and molecular docking, the active components and potential mechanism of ZJW in treating UC were preliminarily identified. Forty-eight male C57BL/6J mice were randomly divided into a normal group, a model group, a sulfasalazine group (300 mg·kg-1), and low-, medium-, and high-dose ZJW groups (1.82, 3.64, 7.28 g·kg-1). The UC model was induced by dextran sulfate sodium (DSS), and oral administration of drugs began on the third day of modeling, lasting for 7 days. The general condition of mice was observed daily, and the disease activity index (DAI) was evaluated. Hematoxylin-eosin (HE) staining was performed to observe histopathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in mouse serum. The molecular mechanism was validated using Western blot. ResultNetwork pharmacology predicted that the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway might be a key pathway in the regulation of UC by ZJW. Molecular docking results showed good binding ability between the key components of ZJW and core targets. Animal experiment results showed that compared with the normal group, the model group had shortened colon length (P<0.01), increased DAI scores, spleen index, colon tissue pathology scores, and levels of TNF-α and IL-6 in serum (P<0.05, P<0.01), increased PI3K, phosphorylated Akt (p-Akt), and B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax) expression in colon tissue (P<0.05, P<0.01), and decreased serum IL-10 levels and colon tissue Bcl-2 protein expression (P<0.01). Compared with the model group, the ZJW groups showed significant improvement in UC symptoms, relieved colon tissue pathological damage, downregulated levels of inflammatory cytokines TNF-α and IL-6 in serum (P<0.01), inhibited expression of PI3K, p-Akt, and Bax proteins in colon tissue (P<0.05, P<0.01), and increased serum IL-10 levels and colon tissue Bcl-2 protein expression (P<0.01), with the high-dose group showing the best effect. ConclusionZJW effectively alleviates DSS-induced UC, and its mechanism may be related to the inhibition of the PI3K/Akt signaling pathway and regulation of apoptosis-related protein expression.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-13, 2023.
Article in Chinese | WPRIM | ID: wpr-976534

ABSTRACT

To investigate the therapeutic effect and mechanism of Qingwen Baiduyin on acute lung injury (ALI) in mice induced by lipopolysaccharide (LPS). MethodA total of 144 C57BL/6 mice were randomly divided into the following groups: a normal group, a model group (LPS, 5 mg·kg-1), a dexamethasone group (5 mg·kg-1), and low-, medium-, and high-dose Qingwen Baiduyin groups (14.105, 28.21, 56.42 g·kg-1). The mice were treated once daily for 5 days. One hour after the final administration, the ALI model was established by intratracheal instillation of LPS, and samples were collected at 6 h and 24 h after modeling. The arterial blood gas index of mice was analyzed. The total protein content, total cell count, Evans blue dye (EBD) content, and lung tissue wet-to-dry weight ratio (W/D) of bronchoalveolar lavage fluid (BALF) were measured. Hematoxylin-eosin (HE) staining was performed to assess the pathological changes in mouse lung tissue. Western blot was used to detect the expression levels of key proteins in the Janus kinase 1/signal transducer and activator of transcription 1/interferon regulatory factor 1 (JAK1/STAT1/IRF1) signaling pathway in lung tissue. ResultCompared with the normal group, the model group showed reduced arterial oxygen pressure (pO2), oxygen saturation (SO2), and lung tissue W/D (P<0.05, P<0.01), increased carbon dioxide pressure (pCO2), total protein content, total cell count, EBD content, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), chemokine CXC ligand 1 (CXCL1), chemokine CXC ligand 2 (CXCL2), chemokine CXC ligand 9 (CXCL9), and chemokine CXC ligand 10 (CXCL10) content (P<0.05, P<0.01), thickening of the alveolar walls, fusion of alveolar cavities, and infiltration of inflammatory cells in lung tissue, increased proportion of M1 macrophage polarization and lung cell apoptosis (P<0.05), and increased protein expression levels of JAK1, phosphorylated JAK1 (p-JAK1), inducible nitric oxide synthase (iNOS), STAT1, phosphorylated STAT1 (p-STAT1), IRF1, gasdermin D (GSDMD), and mixed lineage kinase domain-like protein (MLKL) (P<0.05, P<0.01). Compared with the model group, Qingwen Baiduyin significantly increased pO2, SO2, and lung tissue W/D (P<0.05, P<0.01), improved the pathological changes in lung tissue, and reduced pCO2, total protein content, total cell count, EBD content, IFN-γ, TNF-α, IL-1β, CXCL1, CXCL2, CXCL9, and CXCL10 content, proportion of M1 macrophage polarization, and protein expression levels of JAK1, p-JAK1, iNOS, STAT1, p-STAT1, IRF1, GSDMD, and MLKL (P<0.05, P<0.01). ConclusionQingwen Baiduyin can improve the lung inflammatory response and reduce lung cell apoptosis in mice with ALI by inhibiting the JAK1/STAT1/IRF1 signaling pathway, thereby exerting a lung-protective effect.

SELECTION OF CITATIONS
SEARCH DETAIL